import rasterio import geopandas as gpd import numpy as np import matplotlib.pyplot as plt # --- CONFIG --- raster_path = 'geodata/s2_2025.tif' geojson_path = 'geodata/Trinkbrunnen_Berlin.geojson' # --- LOAD RASTER --- with rasterio.open(raster_path) as src: map_img = src.read([1, 2, 3]) map_img = np.transpose(map_img, (1, 2, 0)) map_transform = src.transform map_crs = src.crs map_bounds = src.bounds map_width = src.width map_height = src.height # --- LOAD GEOJSON --- gdf = gpd.read_file(geojson_path) if gdf.crs != map_crs: gdf = gdf.to_crs(map_crs) # --- PROJECT POINTS TO PIXELS --- pixel_positions = [] for geom in gdf.geometry: if geom and geom.type == 'Point': x, y = geom.x, geom.y px, py = ~map_transform * (x, y) pixel_positions.append((int(px), int(py))) # --- VISUALIZE --- plt.figure(figsize=(10, 10)) plt.imshow(map_img) for px, py in pixel_positions: plt.scatter(px, py, c='deepskyblue', s=40, edgecolors='black', label='Trinkbrunnen') plt.title('Trinkbrunnen auf der Berlin-Karte') plt.axis('off') plt.savefig('datenvisualisierung/trinkbrunnen_karte.png', bbox_inches='tight', dpi=200) plt.show() # --- EXPORT PIXEL POSITIONS FOR GAME --- # Save as npy for easy loading in pygame np.save('trinkbrunnen_pixel_positions.npy', np.array(pixel_positions)) print(f"{len(pixel_positions)} Trinkbrunnen-Pixelpositionen wurden in trinkbrunnen_pixel_positions.npy gespeichert.")